Performance Evaluation a Developed Energy Harvesting Interface Circuit in Active Technique
نویسندگان
چکیده
This study presents the performance evaluation a developed energy harvesting interface circuit in active technique. The energy harvesting interface circuit for micro-power applications uses equivalent voltage of the piezoelectric materials have been developed and simulated. Circuit designs and simulation results are presented for a conventional diode rectifier with voltage doubler in passive technique. Most of the existing techniques are mainly passive-based energy harvesting circuits. Generally, the power harvesting capability of the passive technique is very low. To increase the harvested energy, the active technique and its components such as MOSFET, thyristor and transistor have chosen to design the proposed energy harvesting interface circuit. In this study, it has simulated both the conventional in passive circuit and developed energy harvester in active technique. The developed interface circuits consisting of piezoelectric element with input source of vibration, AC-DC thyristor doubler rectifier circuit and DC-DC boost converter using thyristor with storage device. In the development circuits, it is noted that the components thyristor instead of mainly diode available in conventional circuits have chosen. Because the forward voltage potential (0.7 V) is higher than the incoming input voltage (0.2 V). Finally, the complete energy harvester using PSPICE software have designed and simulated. The proposed circuits in PSPICE generate the boost-up DC voltage up to 2 V. The overall efficiency of the developed circuit is 70%, followed by the software simulation, which is greater than conventional circuit efficiency of 20% in performance evaluator. It is concluded that the developed circuit output voltage can be used to operate for the applications in autonomous devices.
منابع مشابه
Development of a laboratory system to investigate and store electrical energy from the vibrations of a piezoelectric beam
Energy harvesting from surrounding environment has been attractive for many researchers in recent years. Therefore, developing appropriate test apparatus to study energy harvesting mechanisms and their performance is of paramount importance. Due to their electromechanical characteristics, piezoelectric materials are used for harvesting energy from environmental vibrations. For optimum utili...
متن کاملDevelopment of a laboratory system to investigate and store electrical energy from the vibrations of a piezoelectric beam
Energy harvesting from surrounding environment has been attractive for many researchers in recent years. Therefore, developing appropriate test apparatus to study energy harvesting mechanisms and their performance is of paramount importance. Due to their electromechanical characteristics, piezoelectric materials are used for harvesting energy from environmental vibrations. For optimum utili...
متن کاملAn improved analysis of the SSHI interface in piezoelectric energy harvesting
This paper provides an analysis for the performance evaluation of a piezoelectric energy harvesting system using the synchronized switch harvesting on inductor (SSHI) electronic interface. In contrast with estimates based on a variety of approximations in the literature, an analytic expression of harvested power is derived explicitly and validated numerically for the SSHI system. It is shown th...
متن کاملA Batteryless low Input Voltage micro-scale Thermoelectric Based Energy Harvesting Interface Circuit with 100mV Start-up Voltage
A Batteryless low input voltage micro-scale thermo electric based energy harvesting interface circuit with 0.1V start-up voltage presents in this paper. The active technique and its components have been chosen such as MOSFET and thyristor to design the proposed DC-DC boost converter with low input voltage (i.e., 0.1V) for energy harvesting interface circuit. The minimum working voltage as low a...
متن کاملLow Dropout Based Noise Minimization of Active Mode Power Gated Circuit
Power gating technique reduces leakage power in the circuit. However, power gating leads to large voltage fluctuation on the power rail during power gating mode to active mode due to the package inductance in the Printed Circuit Board. This voltage fluctuation may cause unwanted transitions in neighboring circuits. In this work, a power gating architecture is developed for minimizing power in a...
متن کامل